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Background

When measuring physical activity (PA)
with devices, especially accelerometers,
the objective is to detect it by measur-
ing the acceleration occurring at a spe-
cific point on thehumanbody (Burchartz
et al., 2020a). To report physical behavior
(PB) in public health settings, epidemi-
ological studies use times spent at cer-
tain levelsof activity intensity throughout
the day and the week as result. Usu-
ally, these intensities are divided into
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sedentary behavior (SED), light (LPA),
moderate (MPA), and vigorous (VPA)
intensity PA, although there are fewmore
complex evaluation possibilities (Pfeiffer
et al., 2022). To convert the captured
accelerations into these intensity levels,
the collected data needs to be prepro-
cessed. Many parameters like device se-
lection, carrying position and recording
parameters such as recording frequency
or filters influence how the measurement
is transformed into the final results and
largely affect the following estimation of
activity (Burchartz et al., 2020a; Row-
lands et al., 2018). Understanding the PA
behavior of children and adolescents is
severely limited by the presence of many
sets of intensity-based limits for differ-
ent brands andmodels of accelerometers.
Trost (2007) used the term “cut-point co-
nundrum” already in the early days of de-
vice-based assessment of PA to describe
the bewildering number of calibration
studies for different individual popula-
tions with a wide variety of devices and
settings that have beenpublishedwithout
ageneralizedandstandardizedapproach,
which has made a comparison between
individual studies difficult, if not impos-
sible.

Today, thereareevenmoreapproaches
to analyze accelerometer data, and for
these reasons, it is important to doc-

ument all decisions made in recording
and processing the data to allow later
comparison with other studies (Arvids-
son et al., 2019; Burchartz et al., 2020a;
Migueles et al., 2017). In an earlier re-
view, Cain, Sallis, Conway, van Dyck,
and Calhoon (2013) reported that only
about half of all studies report all de-
cisions used during the process of data
processing. In a recent review analyzing
the approach of accessibility and use of
novel analytic techniques for classifying
PA intensity using raw or count-based
accelerometer data, Pfeiffer et al. (2022)
found that less than half of the models
developed between 2000 and 2021 are
not even publicly available. Therefore, it
is not surprising that somanymodels are
not used by other researchers.

One of the first things to look at when
preprocessing the data is the accuracy
of different algorithms for detecting the
time the accelerometer is not worn, the
so-called non-wear time (NWT; Migue-
les et al., 2017). However, determin-
ing NWT has received little attention in
the literature, although it sometimes ac-
counts for a large portion of the activ-
ity data in the 24h activity behavior cy-
cle (Syed, Morseth, Hopstock, &Horsch,
2020). To evaluate compliance with the
study, determiningthe timeduringwhich
the accelerometer was not worn is very
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important. For an accurate calculation
of summary statistics, such as minutes
spent in SED or LPA, MPA, and VPA,
NWT has a profound impact (Syed et al.,
2020; Vanhelst et al., 2019).

Second, the effect of different thresh-
olds for PA intensity classification and
of choosing the right epoch length for
the target population based on age is of
high interest as longasproprietarycounts
are used (Dencker, Svensson, El-Naa-
man, Bugge, & Andersen, 2012), since
classifying activity is done by accumu-
lating counts in a specific time interval,
i.e., the epoch length. For children and
adolescents, an epoch length between 1
and 5s or the shortest possible epoch
length is recommended by Bornstein,
Beets, Byun, and McIver (2011); Migue-
les et al. (2017), andVanhelst et al. (2012)
due to the sporadic activity of children.
Some studies (Banda et al., 2016; Born-
stein et al., 2011; Breau, Coyle-Asbil,
Haines, Ma, & Vallis, 2022; Dias Moura
et al., 2019; Leppänen et al., 2022; Logan,
Duncan, Harris, Hinckson, & Schofield,
2016; Migueles et al., 2019; Xing, Huang,
& Sit, 2021) already compared the ef-
fects of different cut.points for children
in the estimates of PB. However, to our
knowledge, the specific combination of
algorithms used in MoMo have not yet
been compared as a collective. Migueles
et al. (2019) provide a comprehensive
comparison of different cut-point algo-
rithms in overweight children. In doing
so, they demonstrate that it is currently
not andprobably neverwill be possible to
determine the prevalence of meeting PA
guidelines based on accelerometer data.
This is based on the fact that the appar-
ent differences found range from almost
zerotoalmostallparticipantsmeetingthe
guidelines, depending on the algorithm
used for the evaluation. Giurgiu et al.
(2022) found that most validation stud-
ies did not meet recommended quality
principleswhenperforming validationof
wearables in real-world conditions and
therefore recommendusingstandardized
protocols to document all technical deci-
sions for reproducibility. This is another
reason why it is important that this point
of the analysis in MoMo be adequately
documented. Ultimately, the compara-
bility of results from different studies in

Germany stands or falls with the algo-
rithms used to analyze the data.

Many cohort studies use sensors or
generations of software that have been
replaced by newer versions over time,
making it difficult to draw conclusions
about changes in current technology. In
the early days of accelerometry, only ver-
tical acceleration was measured by the
devices. Nowadays, sensors are much
smaller and cheaper than earlier devices
and, thus, it has become state of the art
to measure acceleration in all three axes.
Although this enables for even more ac-
curate measurement, it also comes with
new challenges. Newer cut-point inten-
sity classification based on vector mag-
nitude (the magnitude of a three-dimen-
sional vector as the length of the entire
acceleration, respectively, the movement
in all three axes) produces higher MVPA
time compared to estimations based on
older ENMO (Euclidean Norm Minus
One, see Bakrania et al., 2016) or vertical
axis algorithms, independent of the place
of attachment (Migueles et al., 2019).

As a consequence of the factors de-
scribed above that prevented reasonable
comparability of previous studies, it is
now recommended to analyze multiple
cut-point algorithmsand identify the one
where the validation sample best fits the
target population at hand (Breau et al.,
2022; Burchartz et al., 2020a; Migueles
et al., 2017; Syed et al., 2020). Thismeans
that from the large number of available
validation studies, one selects the study
or algorithm that best fits one’s own
study. It is important that the following
criteria are particularly similar to the
validation study: age frame, gender, de-
vice, location, recording frequency, filter,
epoch length, valid days. By capturing
accelerometer data from 2014–2020,
the nationwide Motorik-Modul study
(MoMo) collected representative data
on the PB of children and adolescents in
Germany in two waves (MoMo wave 2
and MoMo wave 3). The objective of
this study is to transparently examine
the acceleration data of MoMo wave 3
(2018–2022) under the various aspects
of epoch lengths, NWT, and cut-point
sets as a combined overall construct. In
particular, the influence of five different
epoch lengths on two different NWT

algorithms was examined, as well as the
differences when interpreting intensity
classifications by two sets of cut-points
for different age groups. The results are
intended to make German researchers
understand to what extent their own
evaluation changes if individual param-
eters in the evaluation differ. It should
be made clear that their data can only
be compared directly with the results of
MoMo if they are processed in exactly
the same way.

Methods

Study design

The German Health Interview and Ex-
amination Survey for Children and Ado-
lescents (KiGGS) is part of the Federal
Health Monitoring System conducted by
the Robert Koch Institute (RKI) and con-
sists of regularly conducted nationwide
surveysamongchildren, adolescents, and
young adults aged 0–29 years and living
in Germany since 2003. MoMo is a sub-
module of the KiGGS study and aims to
assess physical fitness, PA, and determi-
nants of PA in children and adolescents
(Woll, Albrecht, & Worth, 2017).

The entire study sample was drawn
from the German resident population
aged 4–17 years using a two-stage clus-
ter sampling approach. Furthermore,
participants from the baseline study
(2003–2006), wave 1 (2009–2012), and
wave 2 (2015–2017) were invited back
for wave 3 (2018–2021). A detailed
description of the study design and sam-
pling procedure can be found elsewhere
(Hoffmann et al., 2018; Mauz et al., 2019;
Woll et al., 2017). KiGGS and MoMo
provide nationally representative data
on PA and SED of children, adolescents,
and young adults living in Germany.
A positive vote of the Ethics Committee
of the Karlsruhe Institute of Technology
on 23 September 2014 is available for
the study.

Sample description

For the current analysis, only cross-
sectional data from participants aged
6–17 years from MoMo wave 3 (2018–
2022) were used (n= 1525). All data
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used in this study had been collected
before the first coronavirus disease 2019
(COVID-19)-related lockdown inMarch
2020. The participation in the study was
voluntary and the guardians of the par-
ticipants gave their written consent.

Device-based measured PA data

The technical andmethodological details
of the present study have previously been
published (Burchartz et al., 2021; Bur-
chartz et al., 2020b). In summary, for
the assessmentofdevice-basedmeasured
PA, ActiGraph GT3X+ and wGT3X-BT
accelerometers (ActiGraph, LLC, Pen-
sacola, FL, USA) were used for eight
consecutive days. Participants were in-
structed to place the accelerometer on
the right hip and wear it continuously,
except during water activities or while
sleeping. Data were sampled at a fre-
quency of 30Hz, downloaded as ActiLife
GT3X raw device files, and stored for off-
line analysis. The GT3X files were then
accumulated in ActiGraph count-based
AGD files with a 1 s epoch length and
converted to a Matlab-readable format.

For the present study, we analyzed all
accelerometrydata using theMatlab soft-
ware version R2017a (The MathWorks
Inc., Natick, MA, USA) to automate the
data processingworkflowwithout having
to rely on the ActiLife 6.13.4 graphical
user interface software (ActiGraph, LLC,
Pensacola, FL, USA). The recordings of
the first day were not considered for data
analysis because theparticipants received
the devices at different times throughout
the day. In addition, the first day served
as an adaptation period for the partici-
pants. In total, data for 10,557 days were
recorded in n= 1525 participants, with
data available for all 7 days in 97.2% of
the sample. Data were analyzed for indi-
vidual days to investigate the effect of the
parameters for example on wear time in
the context of the valid day criteria. The
analysis focuses on methodological dif-
ferences rather than test subjects’ results.
This allows examination of how different
the results can be when evaluating them
using different methods.

The epoch length data set of 1 s was
therefore reintegrated into another four
data sets with epoch length of 5 s, 15 s,
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Abstract
This study assesses three factors that
influence the quantification of children’s
and adolescents’ physical activity (PA) using
accelerometers: selection of (1) non-wear
algorithm, (2) epoch length and (3) cut-
points. A total of 1525 participants from
MoMo wave 3 (2018–2022), aged 6–17 years,
wore GT3X accelerometers (ActiGraph, LLC,
Pensacola, FL, USA) during waking hours.
Acceleration counts were reintegrated into
lengths of 1, 5, 15, 30, and 60 s epochs. Two
non-wear time algorithms and two sets
of cut-points were applied to each epoch
length. Differences were found in both the
comparison of the non-wear time algorithms
and the comparison of the cut-points when
the different epoch lengths were considered.
This may result in large differences in
estimated sedentary behavior and PA values.
We propose to pool the data by merging and

combiningmultiple accelerometer datasets
from different studies and evaluate them in
a harmonized way in the future. In addition
to the need for future validation studies
using short epoch lengths for young children,
we also propose to conduct meta-analyses.
This allows the use of data from multiple
studies to validate cut-points and to propose
a consensual set of cut-points that can be
used in different settings and projects. The
high discrepancy between results when
comparing different epoch lengths has to be
considered when interpreting accelerometer
data and is regarded a confounding variable
when comparing levels of PA between
studies.

Keywords
Guidelines · Physical behavior · Data analysis ·
Youth · Vertical axis

30s, and 60s, respectively. Afterward,
each of these five epoch length datasets
were analyzed by specifying the two dif-
ferent non-wear criteria of Troiano et al.
(2008) & Choi, Liu, Matthews, and Bu-
chowski (2011) resulting in 10 different
configurations. TheChoi et al. (2011) al-
gorithms uses a 90min time window for
consecutive zero/nonzero counts with an
allowance of 2min intervals of nonzero
counts with an up/downstream 30min
consecutive zero counts window. For the
Troiano et al. (2008) uses a minimum
of 60min time window for consecutive
zero/nonzerocountswithanallowanceof
up to two continuous minutes of activity
counts ranging from 1–100. Those algo-
rithms were chosen since in the standard
software ActiLife offers only three wear
time validationoptions to users: Troiano,
Choi and a daily/hourly algorithm by
ActiGraph (ActiGraph, 2020). Thus, for
the inexperienced user there is only the
possibility to choose from these two al-
gorithms. Two vertical-axis cut-point al-
gorithms for classification into different
activity classes (Evenson, Catellier, Gill,
Ondrak, &McMurray, 2008; Romanzini,

Petroski, Ohara, Dourado, & Reichert,
2014,. Table1)were thenapplied to each
of these 10 epoch length/NWT datasets,
resulting in 20 final datasets including
all possible combinations of the specific
epoch lengths, NWT, and cut-points.
This decision is oriented to the ICAD
specifications and sample specifications.
Evenson is also used in ICAD as an eval-
uation routine, also only the variant with
vertical axis. However, our age range is
larger than that of Evenson (validated
with 5–9 years). That is why Romanzini
wasused forolderchildreninMoMo(val-
idated with 10–15 years, recommended
also from 12–19 years by Migueles et al.
(2017)).

The Troiano et al. (2008), Choi et al.
(2011), Evenson et al. (2008), and Ro-
manzini et al. (2014)algorithmswere im-
plemented in Matlab programming lan-
guage according to their published de-
scriptions and, where available, the pub-
lished code (Choi et al., 2011). The
Troiano and Choi implementations were
validated against their implementations
in theActiLife Software. Cut-point limits
of the Evenson & Romanzini algorithms
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Table 1 Count cutoff ranges for 1 s epochs of vertical-axis intensity algorithms
Count cutoffs Calibration population

(in years)
SED LPA MPA VPA

Evenson et al. (2008) 5–9 ≤2 >2 to ≤38 >38 to ≤67 >67

Romanzini et al. (2014) 10–15 ≤3 >2 to ≤40 >40 to ≤54 >54

SED sedentary behavior, LPA light physical activity,MPAmoderate physical activity, VPA vigorous physi-
cal activity

Table 2 Valid days depending on the valid hour criterion, epoch length, and non-wear time al-
gorithm
NWT EL

(in s)
8h (in %) 10h

(in %)
12h
(in %)

13h
(in%)

14h
(in%)

15h
(in %)

16h
(in %)

1

5

15 83.83a 77.84a 64.26a 51.62a 35.43a 21.76a 12.17a

30

Choi et al.
(2011)

60

1 83.77 77.83 63.74 51.11 34.63 21.06 11.85

5 83.60 77.56 63.28 50.41 34.03 20.52 11.40

15 83.30 77.10 62.19 49.20 32.84 19.48 10.63

30 83.01 76.61 61.12 47.61 31.33 18.20 9.61

Troiano
et al.
(2008)

60 83.12 76.72 61.50 48.04 31.67 18.44 9.48

NWT non-wear time algorithm, EL epoch length in s,% of n= 21,114 valid days overall
aThe values of the different epoch lengths are uniform for the Choi algorithm within each valid hour
criterion

were independently verified by two au-
thors.

Statistics

All statistical tests were conducted using
IBM SPSS 28 (IBM Corporation, Ar-
monk, NY, USA). Descriptive analyzes,
stratified by NWT algorithms, epoch
length, and cut-point algorithms, were
performed and means (M), standard
deviations (SD), and percentages were
reported, as well as the correspond-
ing inference statistical parameters, in-
cluding 95% confidence intervals for
differences (CI).

Results

Regarding the wear time for each day of
the week, there were no differences be-
tween the algorithms except in the tenth
range (. Fig. 1, Supplement Table 4).
While applying the Choi algorithm re-
vealed more full-day NWT, applying the
Troianoalgorithmresulted inmoreNWT
classification at less than 1h. For both
algorithms, the results indicated a wear
time between 8 and 16h (Choi= 73.5%,

Troiano= 74.6%) for almost three-quar-
ters of the days. Wear times of 0–2h
were classified by both algorithms for
only 9.4% of the days of the week. How-
ever, descriptive analysis of the NWT
algorithms revealed that the mean wear
time of Choi was independently constant
in all epoch lengths and evaluation algo-
rithms (MChoi= 825.01, SDChoi= 165.26).
For Troiano, however, different epoch
lengths had an influence on the result.
Longer epoch length resulted in more
NWT and therefore fewer valid days
(MTroiano1s= 822.48, STroiano1s= 162.38;
MTroiano5s= 819.54, STroiano5s= 160.16;
MTroiano15s = 813.80, STroiano15s= 155.43;
MTroiano30s= 806.42, STroiano30s= 149.36;
MTroiano60s= 805.55, STroiano60s= 145.58)
(. Fig. 2).

The proportion of valid days in the
data set depending on the criterion of
valid hours required decreases rapidly
above 10h of wear time (. Table 2).

For the analysis of the two cut-point
algorithms, only the Choi data set with
more than 8h of wear time was used.
Differences inmeanminutesperdaywere
analyzed for all cut-point levels of both

algorithms and differences were found
between the five epoch lengths (. Fig. 3).

For SED, a 196min (29.5%) and
a 152min (22.4%) decrease were ob-
served between the 1 s and 60s epochs
for the cut-points of Evenson et al. and
Romanzini et al., respectively (. Fig. 3a).
Differences in sedentary time were ob-
served between each activity output for
all epoch length. A decrease in SED time
occurred as epoch length increased for
both cut-points.

For LPA, an increase of 213min
(216.3%) and a decrease of 170min
(185.3%) were observed between the 1 s
and 60s epochs for Evenson et al. and
Romanzini et al. cut-points, respectively
(. Fig. 3b). Differences in LPA time were
observed between each activity output
for all epoch lengths. An increase in
LPA time occurred as the epoch length
increased for both cut-points.

An increase of 0.6min (1.8%) and
1min (7.9%)was observed between the 1
and 60s epochs using Evenson et al. and
Romanzini et al. cut-points, respectively
(. Fig. 3c). There was an overall decrease
in MPA between the 15 and 1s as well
as between the 15 and 60s epochs. The
decrease was 4min (12.2%) and 3min
(10.6%) for Evenson et al. and 2min
(14.4%) and 1min (7.7%) for the cut-
points of Romanzini et al., respectively
(. Fig. 3c). Differences inMPA timewere
observedbetweeneachactivityoutput for
all epoch length except for 5 s (Evenson
et al.) with 30 s and 5s (Romanzini et al.)
with 60 s.

For VPA, a 17min (58.9%) and
a 19min (47.2%) decrease were ob-
served between the 1 s and 60s epochs
for the cut-points of Evenson et al. and
Romanzini et al., respectively (. Fig. 3d).
Differences were observed between the
VPA times spent within and between all
epoch length. A decrease in VPA time
occurred as epoch length increased for
both cut-points.

For moderate-to-vigorous physical
activity (MVPA), 17min (27.5%) and
18min (30.9%) decreases were observed
between the 1 s and 60s epochs for
Evenson et al. and Romanzini et al.
Cut-points, respectively (. Fig. 4). The
meanminutes ofMVPAper day between
both the cut-point algorithms and all
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Fig. 18 Frequency distribution ofwear time per hour, for both non-wear time (NWT) algorithms in%
of datasets

Fig. 29Difference
ofwear time (WT)
for different epoch
lengths andnon-
wear time algo-
rithms (with 95%
confidence inter-
vaI). Analysis for
dayswith awear
time ofmore than
8h

epoch length are statistically different.
A decrease in MVPA time occurred as
the epoch length increased for both cut-
points.

For further analysis, only the data set
with an epoch length of 15 swas analyzed
since this was also used as a parameter in
the validation study of the two cut-point
algorithms (Evenson et al., 2008; Ro-
manzini et al., 2014). When examining
the intensities of individual days (without
days with 0min WT; n= 9937) for nor-
mal distribution, all tests were significant
due to the high number of observations,
but visual inspection of the Q-Q graphs
showed that mainly some outliers in the
high and low ranges are responsible (sup-
plemental Fig. 1). Skewness and kur-
tosis showed that the distribution with
SED was minimally left-skewed (Even-
son: 0.19, Romanzini: 0.08) and val-

ues below the mean were more likely to
be obtained (Evenson: 0.91, Romanzini:
0.99), and that marginal areas are more
pronounced. For LPA, the distribution
was almost symmetric (Evenson: –0.04,
Romanzini: 0.10) for both algorithms
but equally downward sloping (Evenson:
–0.27, Romanzini: –0.27). MPA and
VPAwere no longer normally distributed
for the two algorithms, with the majority
of days having low values.

The results showed that MVPA
was lower for Romanzini (M= 42.89;
SD= 34.19) compared to Evenson (M=
46.28; SD= 36.22). Takingeachstep indi-
vidually, MPA was lower for Romanzini
(M= 17.11; SD= 13.06) compared to
Evenson (M= 30.53; SD= 22.95).
Whereas VPA was higher for Romanzini
(M= 25.78; SD= 23.74) compared to
Evenson (M= 15.75; SD= 17.14).

Calculating active days based on the
WHO guidelines on PA (World Health
Organization, 2010), which means more
than 60min of MVPA per day, there
were somedifferencesbasedontheepoch
length and cut-point algorithm. Of the
10,557 recorded days, 4033 (38.2%) and
3686 (34.9%)were considered active days
at a 1 s epoch length in Evenson and
Romanzini cut-points, respectively. This
number was reduced to 3189 (30.2%)
and 2789 (26.4%) active days at an epoch
length of 15 s, and 2257 (21.4%) and 1909
(18.1%) at an epoch length of 60 s for
Evenson and Romanzini cut-points, re-
spectively.

Discussion

The lack of a standardized preprocess-
ing process for accelerometer data has
challenged research efforts to gain a com-
prehensive understanding of children’s
and adolescents’ PA and how they can
be related to their health behaviors. It
is recommended to analyze multiple
accelerometer data preprocessing algo-
rithms and identify those in which the
validation sample best fits the sample
at hand. Therefore, the present study
aimed to examine the accelerometer data
of MoMo wave 3 (2018–2022) concern-
ing different data processing approaches
used specifically in this scenario.

We sequentially assessed three factors
that based on previous research may in-
fluence the quantification of children’s
and adolescents’ PA using accelerome-
ters: (1) non-wear time algorithm se-
lection, (2) epoch length selection, and
(3) cut-point selection. In our study,
we identified variations when evaluat-
ing data analyzed with different epoch
lengths. Specifically, when using differ-
ent NWT algorithms and definitions of
activity cut-points with epoch lengths
that were not originally used to vali-
date these algorithms, the resulting dif-
ferences in the estimated SED and PA
values turned out to be very large.

Both NWT algorithms used in this
study were similar except for the tenth
range (. Fig. 1, supplemental Table 4).
Approximately 74% of recorded days
had wear times between 8 and 16h
for both algorithms (Choi= 73.7%,
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a b

c d

Fig. 38Meanminutes spent in (a) sedentary time, (b) light, (c)moderate, and (d) vigorous physical activity per day inter-
preted using Evenson et al. and Romanzini et al. algorithms for five different epoch lengths (95% confidence interval). The
15 s epoch length bar is outlined inblackas it is the one it was validated for

Fig. 48Meanminutes spent inmoderate-to-vigorous physical activity per day interpreted using
Evenson et al. and Romanzini et al. algorithms for five different epoch lengths (95% confidence in-
terval). The 15 s epoch length bar is outlined inblack as it is the one it was validated for

Troiano= 74.7%). Although there were
only small differences between the algo-
rithms in general, different epoch lengths
had a significant influence on the results
when using the Troiano algorithm, as
was also found by others (Banda et al.,
2016).

The reason for thedifferences between
the NWT algorithms may be due to how
individual counts are accumulated dur-
ing the allowance periods, regardless of

whether the epoch length is 10 or 60 s.
In the Troiano algorithm, the 2min al-
lowance period is filled with counts oc-
curring during the epochs in this win-
dow. Counts occurring during a smaller
epoch length like 10 s only contribute 10 s
to the allowance window, while the same
countsduringa60 sepochcontribute60 s.
Longer epoch lengths result in less NWT
because the 2min allowance window is
reached faster for the Troiano algorithm.

Banda et al. (2016) on the other hand
described the Choi algorithm accumu-
lates all non-60 s epoch data into 60 s
epoch data before applying the Choi
NWT algorithm. Using a NWT algo-
rithm that remains constant makes sense
because the epoch length also affects fur-
ther data processing. For example, the
intensity algorithms for different age
groups may differ in the specified epoch
lengths.

Research studies have shown that the
choice ofNWTrules can impact the eval-
uation of SED time in adolescents over
the age of 11 (Aadland et al., 2018; Van-
helst et al., 2019). It is recommended
to use algorithms with shorter periods
of continuous zeros for defining NWT
to improve the accuracy in determining
the activity levels. Vanhelst et al. (2019)
recommend 30min of continuous zeros
because longer criteria, such asChoi et al.
and Troiano et al. overestimate SED time
for children under 10 years.

Two other studies suggested that
a 20min window is too short and rec-
ommended a longer window of at least

German Journal of Exercise and Sport Research



60min of consecutive zeros as a realistic
NWTcriterion for younger childrenaged
7–13 years (Banda et al., 2016; Chinapaw
et al., 2014). However, these studies had
small numbers of participants, while the
complete cross-section of the society
is represented in MoMo. Furthermore,
one of the goals in MoMo was to include
as many different children as possible.
Toftager et al. (2013) have shown that
overweight children drop out of the data
set more often when using shorter win-
dow sizes because their behavior is more
sedentary and sometimes misclassified
as NWT resulting in not reaching the
required wearing time. Since Choi uses
a 90min window of consecutive zero/
nonzero counts instead of, for exam-
ple, a smaller window of 30 or 60min,
overweight children should be included
more often in the MoMo dataset instead
of dropping out.

The longitudinal design and the long-
term study duration of almost 20 years
of the MoMo study, with a total of 4 sur-
vey waves (baseline, wave 1–3), resulted
in a very large age range and hetero-
geneity sample of participants. Although
a large part of the data is drawn from
a cross-sectional sample of participants
aged6–17years in eachwave, evaluations
of the repeating and now adult partici-
pants aged 18–32 years are planned soon.
The Choi algorithm has also been vali-
dated for an age range of 10–67 years
(Choi et al., 2011). In addition, Aadland
et al. (2018) recommended to standard-
ize NWT algorithms across studies to
avoidconfoundingand improve the com-
parability of children’s PA levels. To be
able to use validated algorithms for chil-
dren, adolescents, and adults with differ-
ent epoch lengths while still maintaining
the comparability of the data, we decided
touseChoi’s algorithm for calculating the
NWT in MoMo.

The study found that as wear time
criteria became longer, there were fewer
valid days for participants. A change
from an 8h to a 10h wear time criteria
resulted in 5% fewer valid days, which
is acceptable, but a change to a 12h
wear time criteria resulted in a large
20% loss of participants, what is worth
discussing, especially considering the
diverse backgrounds of MoMo partic-

ipants. Therefore, the minimum wear
time for MoMo and KiGGS accelerome-
ter data sets was set to 8h of recordings
on 4weekdays and 1weekend day, which
meets the requirements for inclusion in
the International Children’s Accelerom-
etry Database (ICAD) (Sherar et al.,
2011). Research suggests that measur-
ing PA for 4 days is reasonable (Colley,
Gorber, & Tremblay, 2010; Mâsse et al.,
2005; Matthews, Ainsworth, Thompson,
& Bassett, 2002; Toftager et al., 2013),
although more days are even better
(Chinapaw et al., 2014). To collect the
highest possible number of valid data
sets, participants should wear the ac-
celerometer for 7 days following the day
of the examination in the study center
to ensure inclusion of weekdays and
weekend days, which differ in PA levels
(Burchartz et al., 2022; Chinapaw et al.,
2014; Donaldson, Montoye, Tuttle, &
Kaminsky, 2016; Matthews et al., 2002).

Wefoundsimilarpatternsofresults for
the two cut-point algorithms considered
inMoMo for the averageminutes per day
classified in the intensity levels SED and
PA. Both algorithms showed that SED
and VPA decreased with longer epoch
length, while LPA increased and MPA
peaked at 15 s. Longer epoch lengths led
tomore SEDbeing classified as LPA. This
was shown in . Fig. 3 and supported by
other studies (Banda et al., 2016; Logan
et al., 2016). The wear time did not dif-
fer between the two algorithms, only the
allocation of activity to intensity levels.

However, it must be acknowledged
that although it is now very clear that
small epoch lengths (e.g., 1 s as pro-
posedbyAadland,Andersen,Anderssen,
Resaland, & Kvalheim, 2020; Aadland
& Nilsen, 2022; Bornstein et al., 2011;
Migueles et al., 2017 and Vanhelst et al.,
2012) are significantly better in inter-
preting activity behavior, there are still
almost no new validation studies using
short epoch lengths. For the future, these
short epoch lengths are definitely prefer-
able. However, in order to compare re-
sults with the original activity cut-point
definitions (e.g., a cut-point validated at
anepochlengthof15 s), theepochlengths
used there should be used, otherwise the
results will be misleading.

Assuming that this is possible, at
a minimum, open documentation of
data processing decisions must be pro-
vided to help other studies interpret the
results. This is even more important to
nationally representative studies such as
MoMo, since other studies with special
subsamples (e.g., children with certain
diseases) from Germany, for example,
are using these results to compare their
data.

Banda et al. (2016) and Logan et al.
(2016) compared the Evenson and Ro-
manzini cut-points and found similar
results, but the comparability is compli-
cated because they used different raw
data sets (vertical axis with Romanzini
vs. vector magnitude with Evenson).
Breau et al. (2022) also compared dif-
ferent algorithms for young children
and found significant variations in times
spent in different intensities of PA. The
choice of cut-points affects the propor-
tion of children meeting guidelines, as
shown in other studies (Banda et al.,
2016; Breau et al., 2022; Logan et al.,
2016). Thus, comparisons of movement
intensities should not be made across
studies with the same study population
using different sets of cut-points. We
again emphasize the need for additional
studies validating WT algorithms and
cut-points using smaller epoch lengths
in children and adolescents, as already
suggested elsewhere (Giurgiu et al.,
2022).

On the other hand, Migueles et al.
(2017) recommendedusingdifferent cut-
point criteria for different age groups.
Due to the wide age range in the MoMo
sample (6–32 years), this study divided
participants into children (6–10 years)
and adolescents (11–17 years) and com-
pared the most suitable cut-points of
Evenson (5–9 years) and Romanzini
(10–15 years). These algorithms closely
fit the age groups in MoMo and have
similar validation protocols, both us-
ing an epoch length of 15 s. . Table 1
and . Fig. 5 also show similar cut-point
ranges of the two algorithms. Although
there are slight differences in the classi-
fication of SED and PA times, they are
correlatedwith age. As childrenget older,
their school curricular activities change
from short to longer activity bouts, re-
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Fig. 59 Visual-
ization of the cut-
point ranges for
15 s epochs of verti-
cal axis algorithms.
SED sedentary be-
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physical activity,
MPAmoderate
physical activity,
VPA vigorous physi-
cal activity

sulting in more SED (Crane, Naylor, &
Temple, 2018). This is also confirmed
by PA behavior captured with MoMo
questionnaires, which also showed more
SED for older children (Burchartz et al.,
2021). Differences in the classification
of MPA and VPA compensate for each
other and as they are normally con-
sidered together as MVPA (. Fig. 4).
However, when examining individual
classifications such as VPA, this factor
should be kept in mind, especially since
the percentage of VPA on an average
day has been shown to remain stable
across age groups, while the absolute
time spent on VPA increases at the same
time due to longer waking hours among
adolescents (Burchartz et al., 2022).

The study investigated a large group
of children and adolescents under free-
living conditions and provides important
results on NWT data processing, epoch
length, and intensity classification. The
study’s comprehensive documentation
improves replicability. However, some
limitations should be acknowledged:
(a) cut-points based on a vertical axis in-
stead of vector magnitude are known to
produce significantly lower estimations
of time spent in MVPA (Migueles et al.,
2019). The two cut-points under anal-
ysis in this study only used the vertical
axis. The MVPA values of other vector
magnitude cut-points might therefore be
higher. Although recent studies (Breau
et al., 2022; Leppänen et al., 2022) have
investigated other cut-points, we are
not aware of any study that has inves-
tigated the specific algorithms used in
MoMo; (b) we did not identify sleep/
wake states since the participants were
told to remove the device for sleeping.
Therefore, separate detection of sleep
phases was not possible; and (c) we were

unable to evaluate the precision of the
individual cut-point limits, as we did
not have a comparison criterion measure
available in the present study.

In device-based PA research, there is
currently no consensus on the criteria
for collecting and processing data, lead-
ing to inconsistent reporting methods
that may be difficult for nonexperts to
understand. One solution to this is-
sue is to pool accelerometer data from
different studies and process them in
a standardized way to create compara-
ble variables, as demonstrated by the
ICAD initiative (Steene-Johannessen
et al., 2020). By using standardized
methods, the data can then be processed
in a consistent manner to enable the
creation of comparable accelerometer
variables. Newer open-source metrics
are increasingly being used to analyze ac-
celerometer data (Leppänen et al., 2022).
Previously, it was difficult to evaluate
counts in device-based research because
each manufacturer used different and
undisclosed methods to calculate them.
However, recent studies have shown
that ActiGraph counts can correlate well
with counts from other accelerometer
brands using new methods (Brønd &
Arvidsson, 2016; Brondeel et al., 2021;
Clevenger et al., 2022). Nonetheless,
there is a growing preference for using
raw data to calculate certain metrics.
ActiGraph has responded to this trend
by releasing its proprietary algorithm
for counting, which can now be used to
convert raw data from other accelerome-
ters into ActiGraph counts (Neishabouri
et al., 2022). Open-source analyzes
can further improve data analysis and
make comparisons even between device
models more feasible (Clevenger et al.,
2022).

Conclusion

This study demonstrates the extent of
variation in the results for physical ac-
tivity (PA) levels across epoch lengths,
different non-wear algorithms, and be-
tween different cut-point algorithms.
We identified variations when evaluat-
ing data analyzed with different epoch
lengths, specifically when different non-
wear time (NWT) algorithms and defini-
tions of activity cut-points are used with
epoch lengths that were not originally
used to validate these algorithms. As
a consequence, the resulting differences
in the results of estimated sedentary be-
havior (SED) and PA values can become
very large.

Therefore, our results confirm previ-
ous studies and extend their findings to
a sample of children and adolescents in
Germany. Wehope tohave illustrated the
extent to which the evaluation changes
when individual parameters differ in the
assessment. It can be further concluded
from this that data can only be directly
compared if they are processed in exactly
the same way. The easiest way to do this
is to pool raw data from different studies
and analyze them in a harmonized man-
ner. In addition to new validation studies
with short epoch lengths for young chil-
dren (e.g., 1 or 5 s), we also propose to
conduct meta-analyses using data from
multiple studies to validate cut-points to
propose a consensual set of cut-points
that can be used in different settings and
projects.
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