KIT | KIT-Bibliothek | Impressum | Datenschutz

Synthesizing Distribution Grid Congestion Data Using Multivariate Conditional Time Series Generative Adversarial Networks

Demirel, Gökhan ORCID iD icon 1; Hauf, Jan 1; Butt, Hallah 1; Förderer, Kevin ORCID iD icon 1; Schäfer, Benjamin ORCID iD icon 1; Hagenmeyer, Veit ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

Distribution grid congestion is a significant obstacle to integrating distributed energy resources, leading to voltage instability and overloading grid elements. Existing probabilistic models cannot directly generate realistic multivariate time series data with grid bottleneck characteristics. Generating multivariate time series data that capture photovoltaic and load patterns across correlated buses while performing power flow calculations is inherently complex. These challenges, data compliance issues, and the need for more training data suggest the exploration of Artificial Intelligence methods and the generation of edge test data. This paper introduces Multivariate Conditional Time-series Generative Adversarial Networks (MC- TimeGAN), designed for the conditioned generation of synthetic load and photovoltaic generation profiles. MC-TimeGAN simulates severe grid con-gestion scenarios by purposefully manipulating the respective labels passed to the model and provides data augmentation. Applying this methodology to a validated benchmark dataset for distribution grid shows a significant and realistic increase in grid congestion. Evaluation by power flow calculations, using the dataset generated by MC- TimeGAN shows increase the mean transformer load by 8% and the mean line load by up to 14% compared to the original data. ... mehr


Download
Originalveröffentlichung
DOI: 10.1109/iSPEC59716.2024.10892479
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Proceedingsbeitrag
Publikationsmonat/-jahr 02.2025
Sprache Englisch
Identifikator ISBN: 979-83-503-9507-5
KITopen-ID: 1000179801
HGF-Programm 37.12.02 (POF IV, LK 01) Design,Operation & Digitalization of the Future Energy Grids
Erschienen in 2024 IEEE Sustainable Power and Energy Conference (iSPEC)
Veranstaltung 6th 2024 IEEE Sustainable Power and Energy Conference (iSPEC 2024), Kuching, Sarawak, Malaysia, 24.11.2024 – 27.11.2024
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 385–390
Vorab online veröffentlicht am 26.02.2025
Schlagwörter Deep learning, distribution grid congestion,generative models, multivariate time series, photovoltaic power systems
Nachgewiesen in OpenAlex
Scopus
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page
OSZAR »