KIT | KIT-Bibliothek | Impressum | Datenschutz

Muscles in Time: Learning to Understand Human Motion by Simulating Muscle Activations

Schneider, David 1; Reiß, Simon ORCID iD icon 2; Kugler, Marco 1; Jaus, Alexander 1; Peng, Kunyu ORCID iD icon 2; Sutschet, Susanne ORCID iD icon 3; Sarfraz, M. Saquib; Matthiesen, Sven 3; Stiefelhagen, Rainer ORCID iD icon 2
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)
3 Institut für Produktentwicklung (IPEK), Karlsruher Institut für Technologie (KIT)

Abstract:

Exploring the intricate dynamics between muscular and skeletal structures is pivotal for understanding human motion. This domain presents substantial challenges, primarily attributed to the intensive resources required for acquiring ground truth
muscle activation data, resulting in a scarcity of datasets. In this work, we address this issue by establishing Muscles in Time (MinT), a large-scale synthetic muscle activation dataset. For the creation of MinT, we enriched existing motion capture
datasets by incorporating muscle activation simulations derived from biomechanical human body models using the OpenSim platform, a common approach in biomechanics and human motion research. Starting from simple pose sequences, our pipeline enables us to extract detailed information about the timing of muscle activations within the human musculoskeletal system. Muscles in Time contains over nine hours of simulation data covering 227 subjects and 402 simulated muscle
strands. We demonstrate the utility of this dataset by presenting results on neural network-based muscle activation estimation from human pose sequences with two different sequence-to-sequence architectures. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000180986
Veröffentlicht am 14.04.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Institut für Produktentwicklung (IPEK)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 1049-5258
KITopen-ID: 1000180986
Erschienen in 38th Conference on Neural Information Processing Systems (NeurIPS 2024), Vancouver, 10th-15th December 2024
Veranstaltung 38th Conference on Neural Information Processing Systems (NeurIPS 2024), Vancouver, Kanada, 10.12.2024 – 15.12.2024
Verlag Curran Associates, Inc.
Serie Proceedings ; 37
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page
OSZAR »