KIT | KIT-Bibliothek | Impressum | Datenschutz

Deep Learning-Based Methods for Automated Estimation of Insect Length, Volume, and Biomass

Shirali, Hossein ORCID iD icon 1; Ascenzi, Aleida; Wuehrl, Lorenz ORCID iD icon 1; Beyer, Nils; Lorenzo, Noemi Di; Vaccarella, Emanuele; Klug, Nathalie 1; Meier, Rudolf; Cerretti, Pierfilippo; Pylatiuk, Christian 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

Accurate information on insect biomass and size is fundamental for studying insect behavior, ecology, and decline. However, most methods are labor-intensive, often invasive, and impede large-scale studies. Here, we introduce two novel, non-invasive, deep learning-based methods to automatically measure key insect traits from images. First, we introduce a general approach using Oriented Bounding Boxes (OBB) designed for broad applicability across diverse insect taxa. By adjusting for specimen orientation, this method measures length accurately with a mean absolute error (MAE) of 0.211 mm compared to conventional photomicroscope measurements and provides initial biomass estimates using established length-weight relationships. Second, we tested whether a specialized segmentation model requiring taxon-specific training improves biomass predictions. We show that a model for Tachinidae (Diptera, Calyptratae) can effectively delineate key body parts (head, thorax, abdomen) and provide accurate curvilinear body length, volume, and biomass estimates, correlating strongly with both wet (R ≈ 0.937) and dry (R ≈ 0.907) weight. Validation experiments demonstrate that our methods are accurate and offer advantages over traditional techniques by reducing handling and improving scalability. ... mehr


Volltext §
DOI: 10.5445/IR/1000182031
Veröffentlicht am 28.05.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2025
Sprache Englisch
Identifikator KITopen-ID: 1000182031
HGF-Programm 47.14.02 (POF IV, LK 01) Information Storage and Processing in the Cell Nucleus
Verlag BioRxiv
Umfang 41
Vorab online veröffentlicht am 27.05.2025
Nachgewiesen in OpenAlex
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page
OSZAR »